Tecna rocker arm column online shopping
3 min readPrecise locations of spot welded parts is a cost-related process and should be considered during the design. Part positioning involves either extensive fixturing or, preferably, selfalignment through built-in stamped features like holes and tabs. With the latter method, the location is predetermined by the accuracy of alignment features. The most preferred and most easily achieved method for accurately self-fixturing parts is the half sheared or extruded cylindrical button and matching hole in the mating part. One mating hole should be 0.003 in. (0.08 mm) larger in diameter than the extrusion and the second hole should be slotted by 0.040 in. (1.02 mm) minimum to allow for normal fabrication tolerances as shown in the drawing. Another alternative is to produce a lanced tab in a punching process. Mating parts can then be brought up to it and located in position.
If the sheets are the same thickness then the power setting used for plug welding would be the same as you would use for 1.5 times the thickness of one of the sheets. This is the sort of penetration you would expect from a plug weld. The molten pool is just breaking out of the reverse of the back sheet. The heat marks indicate the weld has arced against the back sheet rather than at the side of the hole. If you don’t get these marks then consider a little seam welding just to be sure. There is a special clamp designed for plug welding that makes life really easy. The parts you see in the photograph are attached to a normal mole grip. This clamp came in a set of three random welding clamps all of which are extremely useful.
Materials Appropriate for Spot Welding: Due to its lower thermal conductivity and higher electrical resistance, steel is comparatively easy to spot weld, with low carbon steel being most suited to spot welding. However, high carbon content steels (Carbon equivalence > 0.4wt%) are prone to poor fracture toughness or cracking in the welds as they tend to form hard and brittle microstructures. Galvanised steel (zinc coated) requires slightly higher welding currents to weld than uncoated steels. Also, with zinc alloys, the copper electrodes rapidly degrade the surface and lead to a loss of weld quality. When spot welding zinc coated steels, electrodes must either be frequently exchanged or the electrode tip surface should be ‘dressed’, where a cutter removes contaminated material to expose a clean copper surface and reshapes the electrode. Read more details at Auto Body Spot Welder.
Electric welding relies on the Joule Effect. This is the thermal result of the electrical resistance, occurring when an electric current passes through a conductive metal – in this case metal sheets for assembly. If that last sentence went over your head, here’s how it works: to weld two or more sheets together without adding a filler metal, they are tightly compressed between two heat-resistant electrodes (i.e. non-melting), generally made of copper, and a high-intensity current is applied to melt the plates together at that point. The result is a small merging of metal which constitutes a welding point. The welding time is very short, between one and two seconds, and the shape of the resulting welding spot depends on your choice of electrodes.